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Structural and elastic properties of the dipolar Gay-Berne model
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A statistical-mechanical theory based upon the method of conditional distribution functions, and taking into
account translational and orientational correlations as well as their coupling, has been applied to calculate
structural and elastic properties of a system comprised of interacting cylindrically symmetric particles. Calcu-
lations have been carried out for a simple-cubic parking, and using two interaction models, i.e., both the usual
Gay-Berne potential and the same model supplemented by a truncated dipolar term. An extensive study of both
models over a range of temperatures and densities has provided detailed information on the elastic behavior of
their resulting nematic phases. Our results also show that the elastic properties are affected in a more pro-
nounced way by changes in the thermodynamic conditions than by the dipolar contribution in the potential.
[S1063-651%98)00212-9

PACS numbgs): 61.30.Cz, 64.70.Md

I. INTRODUCTION behavior and on measurable macroscopic quantities reflect-
ing underlying microscopic interactions and correlations.

The variety of mesophases formed by anisotropic molddentification of the molecular features and correlations
ecules interacting via the Gay-Bert@B) potential[1] has among molecules, which compose a nematic phase, that in-
stimulated the interest of researchers. Rull and co-workerfiuence its elastic behavior is thus of primary interest.

[2] described a complete diagram of the GB fluid, using the The effect of dipolar interactions on mesomorphic behav-
parametrization originally proposed by Gay and Befhg  ior has recently been studied by Monte Carlo simulations
and found isotropicl(), nematic (N), and smecti® (SmB)  (MC), based on dipolar GB potentigl0—12. In contrast to
phases. Luckhurst’s group carried out extensive simulationgure GB models, bulk and surface elastic constants for these
[3], using a different choice of potential parameters, andnodels have not yet been investigated. Of course, a common
found that, in addition td, N, and SnB, a SmA phase also intuitive notion is that the additional dipole-dipole interac-
appeared; a recent and extensive simulation study of the efion has a greater influence on molecular structure than on
fect of elongation on the phases diagram can be found imacroscopic quantities such as elastic constants. Neverthe-
Ref.[4]. Nevertheless, it should be pointed out that a numbeless, a theory capable of estimating the effect of dipole-
of fundamental questions still remain unanswered, evedlipole interactions on the behavior of elastic constants would
though numerous studies have been undertaken in this ard2e most desirable.

One of them concerns the influence of microscopic correla- In this paper, we perform calculations of order parameters
tions and interactions among molecules composing th@nd Frank bulk elastic constarks,, K,,, andKs3, both for
liquid-crystal phase on such measurable quantities as Frartke usual GB fluid and for dipolar ones. This has been real-
elastic constants and viscos[ty]. ized theoretically by combining the previous advantdd&$

Over the years, quite a few microscopic theories havedf integral equation approaches with microscopic expres-
been developed, both for bulk and surface elastic constangions for the elastic constants in terms of the direct correla-
[6—8]. On the other hand, in practice, it is difficult to mea- tion function(DCF) [14,15.
sure the absolute values of these elastic coefficients. For ex- The present paper is organized as follows: a description of
ample, it has been shoy8] that the experimental results for the statistical-mechanical treatment is given in Sec. Il, the
K1, andK,, (splay and twist distortion modes, respectiyely numerical solution of the resulting nonlinear integral equa-
have a weak temperature dependence, whekegs(bend tions is discussed in Sec. lll, intermolecular potentials are
distortion modg rapidly increases with temperature. How- described in Sec. 1V, statistical-mechanical expressions for
ever, computer simulations of the GB nematic liquid crystalsthe Frank constants are given in Sec. V, and numerical re-
show[7] that all three elastic contents have the same, nearlgults are given in Sec. VI; we finally summarize our main
linear, temperature dependences. results and conclusions in Sec. VII.

The long-term aim of our research is a detailed under-
standing of the effect of dipolar contributions on structural Il STATISTICAL-MECHANICAL TREATMENT
We consider here a classical one-component fluid, con-

* Author to whom correspondence should be addressed. Electrongisting of cylindrically symmetric particles; leg; denote
address: avz@physc.su.se Permanent address: Saint Petersburgtheir center-of-mass coordinates, anddetienote unit vec-
stitute for Machine Sciences, the Russian Academy of Science$prs defining their orientations; in the following the collec-
Saint Petersburg 199178, Russia. tive symboli=(q;,e) will also be used. One considelé
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one can ideally subdivide to total volume inltbcells, each and then the expressions for binary mean-force potential
with volume v=V/N. The treatment used here further as- ¢;;(ij) and functionF;;(ij) take the forms
sumes that each cell is occupied by one and only one mol-

ecule. Particles are assumed to interact via a pairwise addi- eij(i)=ei()+ ()= @i j(1) =i,
tive potential®(i,j), so that the total interaction energy for

theN particles isU=3;_;®(i,j). The quantity expt U) is Fij(i] )=Q Zexp{— B[D(ij)+ @i(i)+¢j())
the canonical probability density; upon integrating out the ) i

coordintes of remaining particles, one can define single- —¢ii(D =D

particle probability densitie&;(i), two-particle probability
densitiesF;;(ij), and so or{13,16]; we truncate the infinite
hierarchy at the two-particle level. By the partitioning of -
space mentioned abovi,(i) is the probability density for a y=exq=pBe),
single particle confined inside a cell of volume and
Fij(i]) is a probability density for two particles confined in
two different cells. The above-mentioned functions can also
be written in terms of mean-force potenti@dFP’s), i.e.,

Using now the definitions

V(ij) =exp(—BP(ij)),

the expressions for binary functions takes the form
(D) =FiOF;(DOVAD i Oyt @)

Fi(i)=(1/Q)exp(— Bei(i)), (1)  The last three factors in Eq7) reflect correlations betwen
cells, which distinguishes the approach used here from
Fi,-(ij)=(1/Q2)exp{—/3[goij(ij)+<I>(ij)]}, (2)  mean-field approximations. Substitution of H@) into Eq.
(5) leads to a closed system of nonlinear integral equations

where (NIE’s) for the MFP’s[13],
Q=ﬁd<‘>exp(—ﬂ¢i“>)' fid“):fwdqid%- wi,j<i>=ijJ-(j)vaj)wj,ﬁ(j), ®
Here B=6"1=(kgT) ! is the inverse temperature and where
=v® a, Wheree is the volume associated with orientations.
The functionsp;(i) and¢;;(ij) are singlet and binary mean- wi(J)
force potentials, given by sums of the form Fi(i)= '—]. 9)
fj i(1)d(j)

<pi<i>=j§i @10, 3)
Equations(3), (8), and(9) now provide a closed system of
. . nonlinear integral equations for the MFP’s. After solving
eij(1])= %‘41 @iji(i)). (4 these equations, one can compute microscopic properties of a
' liquid-crystalline system, expressed in terms of one- and
Here ¢; j(i) and ¢;; (i) are mean-force potentialgy (i) two-particle functions, as well as thermodynamic ones ex-
is the singlet mean-force potential for a molecule in ttie  pressed in terms of the free enelds, 16, i.e.,
cell, due to a molecule in thgh cell, and averaged over the
state of the latter. Similarlyg;; (ij) is the binary mean-
force potential of moleculesandj in theith andjth cells,
due to a molecule in thih cell, and averaged over the state
of the latter. The subscripts before the comma correspond to
the MFP dependence on the coordinates of molecules; the wi(i)zﬂ Wi i(0). (12)
subscript after the comma corresponds to the average states. J

I
Using now the relations between singlet and binary functions ,
which follow from their definition, one has In Eq. (11), theTl;.; run over all neighbors of cell. Note
that the same system of equations appears in the Bethe ap-

. ] ) B ) proximation for a lattice model of surfactant mixturgsq.
fid(')':i(')zl- f.d(J)Fij('J )=Fi(i). () (12 in Ref.[17], and Ref[18]]; let us also mention that the
. present approach is similar in spirit to cluster variational
The two-particle function is similarly related to a three- Methods, originally developed for magnetic lattice spin mod-
particle function by an integral relation, etc. Here and in the€!s (see, e.g., Ref19]), and later used for nematogenic lat-
following we take into account only singlet- and two-particle fice models as wellsee, e.g., Refd.20,21)). In Ref. [21]
functions of the infinite hierarchy, i.e., only pair correlations Poth the two-site cluster method and computer simulation
between cells. In order to obtain a closed set of equations, w&ere used to study a lattice model consisting of three-
separate the MFP’s into irreducible paf1$,16]. To the ap-  €omponent unit vectors, associated with a simple-cubic lat-
proximation considered here, i.e., neglecting three-cell an§C€, and interacting via a nearest-neighbor potential of the

higher-order correlations, we have form —aPy(7) +bPy(7),7=6-&, wherea>0, and theb
term crudely allows for polar effects; heRy andP, denote

@ij () =i () +e;1()), (6) first- and second-order Legendre polynomials.

f=F/N=—3*1|nfi¢i(i)d(i), (10
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IIl. METHOD OF SOLUTION FOR THE SYSTEM IV. PAIR POTENTIAL MODEL

OF NONLINEAR INTEGRAL EQUATIONS . . . . .
Q The kernel of integral equations in E@.3) is determined

The problem of solving the five-dimensional problé& by the pair interaction potential; for two arbitrary molecules
is very complicated, and there are no good general method$) and (j), let us first define
for more than one nonlinear equation. Except for linear prob-
lems, solutions are invariably obtained by a numerical itera- Gj=a9—q;, d=|ayl, ri;=a/q;-

tive procedure, using the formula The pair potential was chosen to be the sum of a Gay-Berne

(GB) [1] and dipole-dipole interaction
O(ij)=Dgp(i]) +Pyq(i])-

whereL,||L||<1 is the five-dimensional nonlinear integral The GB term has the forfi]

operator defined by E@8) in the spacev,=v® «, andP; is 1

a five-dimensional vector in the same space. B o(iiN=4 0 _ 0o
The problem of the existence and uniqueness of the solu- c(i])=4¢oe qij—o+og gij—o+oy

tion for the one-dimensional problem has been investigated (15

by Kronrade(see Ref[22]), and this finding can be gener-

alized to multidimensional domains as wdR3]. For Whereo=o(rj,&.€) and e=€(rj; . ,g) depend on mu-

smoothly varying functions, good algorithms will always tual orlentatlon_s but not on the distance betyveen centers of

converge, provided the initial guess is accurate enough; thu¥ass, and their expressions can be found in RHf. Egs.

success strongly depends on a good initial guess for the s63) (4), (8), (9), and(10). o depends on the molecular elon-

lutions ¢(P;). The algorithm(12) was implemented as fol- 9ation (or length-to-breadth ratjoy (denoted byo /o, in
lows: the initial approximation was set to Ref.[1]), wherease depends on botly and another param-

eter, which can be used to adjust the ratio between end-to-
end and side-by-side well depths, denotedepe;. In our
calculations, the parameters and v of Ref. [1] have been
fixed to the values 1 and 2, respectively. The dipolar inter-

e Py) = {ytd(P) Lyld(Py}2 (12)

MOl (P;) = const

and action is defined by
| Nm L AZ
HOpPn=11 11 PPy, ‘Ddd(ll)zq—3{Q'el_3(rij'Q)(rij'ej)}, (16)
m=1j#i ' ij

whereA is the common magnitude of molecular dipole mo-
ments; we are considering here central dipoles along molecu-
lar symmetry axes. As pointed out in the preceding section,
the interaction was truncated at second neighbors.

wherel is the number of neighbors amd, is their quantities.
The integrals in the right-hand side of

g P = (M) Ly (P2, (19
V. FORMULAS FOR THE FRANK ELASTIC CONSTANTS

form=1,2,... |, have to be calculated numerically, i.e., Within the framework of the theory in Reff14], based in
turn on a density-functional approach, one can write a for-
mally exact expression for the Frank elastic constants, i.e.,

M
fldxl.-.fldxnf(xl,xz, LX)~ (M) D f(P,),
0 a=1

0 K11
(14) 7=1+7\(5—92), (17)

where the points are chosen according to some suitable cri- Ko
terion: a straightforward Monte Carlo integration yields a ?=1—)\(1+3Z), (18

precisionR~O(1//M), whereas Sobol's method_P, se-

guence [24], see also the Appendix produces R Kas

~O(M~Y(InM)"). ?=1—4)\(1—32), (19
The iterative procedur¢Eqg. (12)] can be repeated for

various neighbors of thith cell; in order to keep the treat- |\ here

ment numerically tractable, we took the drastic step of trun-

cating the interaction potential at second neighbors. 34_56 w2—1
The procedure was then iterated until a prescribed accu- z=

racy was achieved. The number of iterations ranged between

a few tens and a few hundreds, depending on the number of

factors, but mainly on the kern&l(ij). Calculations were

carried out usingVl =800, corresponding to 88@oints for a

Monte Carlo integration of comparable accuracy. (21

=, A= , 20
PPy AwTFD) 20

1 1 — o= = 3—w
K:§(K11+ Koot K33):§|-(3P2_1) (Pz_P4)W,
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2 12 1
y—1 1+ Gw
0= . L=3Myb%20nrwi0——m—,
Y2 +1 4B p 0o (1— 0?)? .
2L
(22) 0=0.33, u'=0
1+ 2 w?
=4 2 2M .
b=dmaopw 3(1-w)’ 0.75 -

here M,,,=— [5dyC(y)y?™, m=1,2 are radial integrals
over the DCF.
Order parameters can be expressed in terms of the func-

tion (i) as 05 L “m

E2|_:<|32L((3056’i)>i:fid(i)Fi(i)PzL(COSﬁi), (23

where 6; denotes the polar angle, i.e., the angle between the Tele

long axis of the molecule and the director, taken to coincide 0.25 R

with the cellz axis. )
There exists another density-functional approddb|

connecting elastic properties of the nematic with structural T

guantities such as the one-particle distribution function and 0.8 1.2 1.6

the DCF, both of an aligned nematic. Based on the Onsager ?

approximation for the DCF, i.e., FIG. 1. Temperature dependence of orientational order param-

_ etersP,, for the pure GB model, at constant density. Circles;
C(q;j .6 .6) =exy{ —fP(a;;.6,6)} — 1, (24) triangles,P, in the framework of the present theory; squares and

the Frank elastic constants are expressed by diamonds refer toEz and 54, respectively, as estimated by
molecular-dynamics simulatiofY] at the same density.

[
42

K11
?:1+7‘1_3)‘221’ (25 level of rigor, but then use a lower one in the final expres-
sions for the elastic constants. Here we attempt to take into
K 5o account the influence of intercell pair correlations on the
?:1_27\1—>\221, (26) elastic constants, in the framework of average force poten-
tials, by calculating the ratioK;; /K and avoiding explicit
Kas calculation of the DCF.
?:1"1')\14—4)\221, (27
VI. NUMERICAL RESULTS
where Our calculations have been performed for temperatures
34 SR2_2 27 R2_1 and densities, corresponding to the nesfnatic phase. Reduced
Z1=—, N=>—7—, »=—=—>——, R=y—1 units have been used for densitg=foy/v), temperature
P, 7R°+20 16 7R°+20 (B~ 1=60=KkgT/ey), dipole moment[u*=A/(odep) ¥,
(28) and anisotropy parameter, for which the valuey=3 was

. hosen
In the framework of the theory in Reff14], Nemtsov took a chosen.
different approximation for the DCF,C(qy & &) Figure 1 reports the temperature dependence of order pa-

=C(qij /o), whereo is the size parameter, which dependsf@metersPy_at fixed densityp=0.33, and shows a good
on molecular orientations, and is given by E(®~(10) of ~ agreement with the corresponding simulation results from
Ref. [1]; this turned out to work slightly better than Onsag- Ref.[7]; Fig. 2 shows the density dependence of the nematic
er's approach. order parameter®,, at fixed temperatur=1, for both
Another remark on the level approximations involved ispolar and nonpolar models; the density range (&27
appropriate: one can calculate the set of order parameters #0.33) corresponds to the nematic range of the GB fluid. As
the framework of a statistical-mechanical theory which ac-expected, orientational order is found to increase with in-
counts for intercell pair correlations, based, for example, orereasing density. Figure 3 shows the temperature dependence
the concept of average force potentials. However, the DCBf the elastic constants;; /K, at fixed densityp=0.33, cal-
used in the expressions for the elastic consta(ig)—(19) culated using the different approaches mentioned above and
and (24)—(26)] has been calculated in the framework of the compared with results of molecular-dynamics simulations at
mean-field theorysee also Eq(35) of Ref.[6]], where the the same thermodynamics conditibf|; on the whole, the
repulsive interaction has the form of a hard-core potentiatlifference between the reseults obtained by the two theoret-
with an angle-dependent size parameteiand the attractive ical treatments is roughly independent of temperature. Re-
part is treated to first order in perturbation theory. In othersults of calculations for splay deformatidd;;/K (black
words, one can calculate the set of order parameters at orsymbols: circles, squares, triangletiow the best agreement
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L — between the two theoretical approaches as well as with simu-
T lation results: results of both calculations for twist and bend
Pa deformations show more pronounced differences from the

results obtained by the two theoretical approaches, as well as
with simulation results: in Fig. 3 the disagreement with
0.75 = simulation results folK,,/K increases with lowering tem-
perature, whereas for bend deformatkog/K the same dif-
ferences increase with increasing temperature.

The present results show a pronounced increase,of
8=1 with increasing dipolar contribution; this is in qualitative
agreement with simulation results obtained by various au-
thors[10-12, showing that a strong dipolar contribution can
even favor smectic ordering.

a7 In a few cases we examined the effect of different trun-
cation radii; for example, whep=0.33, =1, andu* =

we found a change i, from 0.954(nearest neighboyso
0.25 - s 0 0.9695(second neighboysfor the same values gf and 6,

* but u* =2,P, similarly changed from 0.9695 to 0.9806. Re-
sults quoted in the following were obtained by taking into
005 T o3 T T o35 account first and second neighbors only. _
P The most rigorous test of the theory would be a compari-
son with the Monte Carlo simulations for the same pair po-
FIG. 2. Density dependence of orientational order parameter% ntial. Such computer simulation data for @E’ have been
PZL at constant temperature, and for different values of the reduce eported[10] at fixed temperature=1.2, densityp=0.3,
dipol t. Circlesp, f =0; di d fi =0;
po’e moment. LArcles?, for w lamondsp, for u* . and dipolar momenju* =2.0. We found a change iR,
squares and triangles refer ®, and Py, respectively, ands from 0.963(in our calculationsto 0.97(in Ref.[10]).
=2 Figure 4 shows the effect of dipolar interactions on order
parameters?,, , at fixed densityp=0.33, and for two tem-
peratures; Fig. 2 shows the influence of dipolar interaction

1.4 on order parameter®,, , for the number of densities, at
fixed temperature9=1.0; they both point to a significant
Ki/K
1
JRUIRR 5]
12 _ -
Pa
B E
. 0.75 b
1+ LTy
LR T ¢ T
p=0.33
A, A ‘
T
A
0.8 o 0.5
| . 1 ’
0.6 1 15 0.25
9
FIG. 3. Temperature dependence of the ratjo/K at constant | |
density. Black circles, values f,,/K calculated by means of Eq. |
(17); black squares, the same values based on(Z&; black tri- ®

angles, values of splay deformations recalculated from Fig. 6 in
Ref.[7]. Empty circles, values df,,/K calculated by means of Eq.
(18); empty squares, the same values based on(Es); empty
triangles, values of twist deformation recalculated from Fig. 6 inder parameter§>2L at constant density, and for different tempera-
Ref. [7]; stars, values oK 33/K calculated by means of E¢19); tures. Circles P2 at 0=1, trlangles P4 at the same temperature;
crosses, the same value based on @6); diamonds, values of squares and diamonds referFPQ and P4, respectively, ap=1.5.
bend deformation recalculated from Fig. 6 in Reéf].

FIG. 4. Influence of the dipolar interaction on orientational or-
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1.4
Ki/K F 1.4 -
o memommmmmammmemeons s
1.2 Ka/K
0=0.33, 0=1
1.2 -
¥=1
1 . “
1 —
0.8 ................... .A_..._._A.A.......A....A
0.8 -
L L L L 1 L L L L
0.6 j————————F———— 0.25 0.3 0.35
u o
FIG. 5. Influence of the dipolar interaction on the ratigs/K, FIG. 6. Density dependence of the ratiig /K, at constant

at constant density and constant temeprature. CrogsgéK by  temperature, and for two valugs* =0 andu* =2. Stars and tri-
Eq. (19); stars,Kss/K by Eq. (26); circles, Ki;/K by Eq. (17); angles indicate ratio&;3/K calculated by means of E¢19) for

squaresKy,/K by Eq. (24); triangles,K,,/K by Eq. (18); dia-  #* =0 andu* =2, respectively. Diamonds and circles indicate ra-
monds,K,/K by Eq. (25). tios K;;/K calculated by means of Eq17) for u*=0 u*=2,

respectively. Crosses and squares indicate rétipéK calculated

strengthening of orientational order with increasing density?y means of Eq(18) for u* =0 andu* =2, respectively.

and dipole moment. ) o

Finally, Fig. 5 reportsu* dependences of the ratios character would become computationally prohibitive.

K, /K, at fixed densityp=0.33 and temperaturé=1: Fig. On the basis of these calculations, it is concluded that the
6 reports their density dependence at fixed temperatur@l@stic constants are affected in a more pronounced way by
(§=1), at two different values o&* . Notice that individual changes in the thermodynamic state than by dipolar interac-
order parameters exhibit a pronounced dependence’an tions. We a_lso Wlsh t(_) comment on the app_rOX|mat|ons in-
but the ratios of the elastic constants depend on the ord&polved in this and similar treatments. At the first level, some
parameters via their combinatiorsand z, [see Eqs(17)— kind of approximation is needed in order to calculate order

(26)], whoseu* dependence is rather weaker. On the othefP@rameters, which may or may not involve neglecting short-

hand, a strong density dependence of the individual elastif2ng€ pair correlations. o .
constantsk; should be expected, sindé; ~p? (see the At the second level, some simplified version of the DCF
equations ir|1| Sec. ¥ ' " has to be used, and this often means neglecting short-range

pair correlations, even if taken into account at the previous
one; the procedure is expected to yield better estimates of
ratios between elastic constants than of their individual val-

In this paper, a statistical-mechanical theory based upoH€sS.
the method of conditional distribution functions has been
applied to calculate structural properties and Frank elastic ACKNOWLEDGMENTS
constants for a system consisting of cylindrically symmetric )
particles interacting via a Gay-Berne pair potential, also One of us(A.V.Z.) gratefully acknowledges the Russian
supplemented by a dipolar term. Calculations of the elasti€unds for Fundamental Resear@Brant No. 98-03-32448
constants of the purely Gay-Berne model have been carriednd for Natural Research Fun@Srant No. 97-9. 3-3) his
out on a simple-cubic system, and for a range of temperatur@y in Italy was supported by a NATO grant allocated by the
and densities corresponding to the nematic phase, as in th&lian CNR; finally the Physics Department of Pavia Uni-
phase diagram calculated by de Miguel and RR6). Two  Vversity is thanked for scientific hospitality.
analytical theories expressing the elastic constants in terms

VIl. CONCLUSIONS

of DCF have been testdd4,15, and a good agreement has APPENDIX: SOBOL'S METHOD [24]

been found between their predictions, as well as with results )

obtained by molecular-dynamics simulatif], via expan- ~The LP, generator f}as bleenlorganlzed as fc7||ows: one
sion of the DCF on the basis &ffunctions. initially new sequencaV{"=r2-* where entries(" were

In addition to the pure GB model, we have also investi-takes from Table 1 of Refl24], and eaChWJ(') were ex-
gated the effect of dipolar interaction although in a morepressed as finite binary fraction. If the binary representation
approximate way, since a proper treatment of its long-rangef an arbitrary integer is e,,- - - e,e1, then thejth compo-
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nent of the pointP, is given by P’ —elvv(l)*e vv(2> CoordinatesP, in Eg. (13) were chosen such that
*emW(m) wherex denotes addition modulo 2in each bi- w[l (P,) could be calculated at points forming the same sta-
nary place and=1,...n. We used the relatively slow tionaryLP  sequence as used in the evaluation of integrals

arithmetic program for creatlon of theP, sequence: the with the |n|t|aI approxmauon//[o](Pa) In other words, the
effort to generate an-dimensional pomPa is proportional  grid points are generated once and for all; a more detailed

to (logya)®n. discussion ol P . sequences can be found in REZ5].
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