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Structural and elastic properties of the dipolar Gay-Berne model

A. V. Zakharov* and S. Romano†

Istituto Nazionale per la Fisica della Materia, Dipartimento di Fisica ‘‘A. Volta,’’ Universita´ di Pavia,
via A. Bassi 6, I-27100 Pavia, Italy

~Received 5 June 1998!

A statistical-mechanical theory based upon the method of conditional distribution functions, and taking into
account translational and orientational correlations as well as their coupling, has been applied to calculate
structural and elastic properties of a system comprised of interacting cylindrically symmetric particles. Calcu-
lations have been carried out for a simple-cubic parking, and using two interaction models, i.e., both the usual
Gay-Berne potential and the same model supplemented by a truncated dipolar term. An extensive study of both
models over a range of temperatures and densities has provided detailed information on the elastic behavior of
their resulting nematic phases. Our results also show that the elastic properties are affected in a more pro-
nounced way by changes in the thermodynamic conditions than by the dipolar contribution in the potential.
@S1063-651X~98!00212-8#

PACS number~s!: 61.30.Cz, 64.70.Md
o

e
th

on
n

be
ve
ar
la
th
ra

v
an
a-
r e
r

ly

-
al
ar

e
ra

ect-
s.
ns
t in-

av-
ns

ese
mon
c-

on
rthe-
le-
uld

ers

al-

es-
la-

n of
the
a-

are
for
re-
in

on-

c-

on
ur
ce
I. INTRODUCTION

The variety of mesophases formed by anisotropic m
ecules interacting via the Gay-Berne~GB! potential@1# has
stimulated the interest of researchers. Rull and co-work
@2# described a complete diagram of the GB fluid, using
parametrization originally proposed by Gay and Berne@1#,
and found isotropic (I ), nematic (N), and smecticB (Sm B)
phases. Luckhurst’s group carried out extensive simulati
@3#, using a different choice of potential parameters, a
found that, in addition toI, N, and SmB, a SmA phase also
appeared; a recent and extensive simulation study of the
fect of elongation on the phases diagram can be found
Ref. @4#. Nevertheless, it should be pointed out that a num
of fundamental questions still remain unanswered, e
though numerous studies have been undertaken in this
One of them concerns the influence of microscopic corre
tions and interactions among molecules composing
liquid-crystal phase on such measurable quantities as F
elastic constants and viscosity@5#.

Over the years, quite a few microscopic theories ha
been developed, both for bulk and surface elastic const
@6–8#. On the other hand, in practice, it is difficult to me
sure the absolute values of these elastic coefficients. Fo
ample, it has been shown@9# that the experimental results fo
K11 andK22 ~splay and twist distortion modes, respective!
have a weak temperature dependence, whereasK33 ~bend
distortion mode! rapidly increases with temperature. How
ever, computer simulations of the GB nematic liquid cryst
show@7# that all three elastic contents have the same, ne
linear, temperature dependences.

The long-term aim of our research is a detailed und
standing of the effect of dipolar contributions on structu
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behavior and on measurable macroscopic quantities refl
ing underlying microscopic interactions and correlation
Identification of the molecular features and correlatio
among molecules, which compose a nematic phase, tha
fluence its elastic behavior is thus of primary interest.

The effect of dipolar interactions on mesomorphic beh
ior has recently been studied by Monte Carlo simulatio
~MC!, based on dipolar GB potentials@10–12#. In contrast to
pure GB models, bulk and surface elastic constants for th
models have not yet been investigated. Of course, a com
intuitive notion is that the additional dipole-dipole intera
tion has a greater influence on molecular structure than
macroscopic quantities such as elastic constants. Neve
less, a theory capable of estimating the effect of dipo
dipole interactions on the behavior of elastic constants wo
be most desirable.

In this paper, we perform calculations of order paramet
and Frank bulk elastic constantsK11, K22, andK33, both for
the usual GB fluid and for dipolar ones. This has been re
ized theoretically by combining the previous advantages@13#
of integral equation approaches with microscopic expr
sions for the elastic constants in terms of the direct corre
tion function ~DCF! @14,15#.

The present paper is organized as follows: a descriptio
the statistical-mechanical treatment is given in Sec. II,
numerical solution of the resulting nonlinear integral equ
tions is discussed in Sec. III, intermolecular potentials
described in Sec. IV, statistical-mechanical expressions
the Frank constants are given in Sec. V, and numerical
sults are given in Sec. VI; we finally summarize our ma
results and conclusions in Sec. VII.

II. STATISTICAL-MECHANICAL TREATMENT

We consider here a classical one-component fluid, c
sisting of cylindrically symmetric particles; letqi denote
their center-of-mass coordinates, and letei denote unit vec-
tors defining their orientations; in the following the colle
tive symbol i[(qi ,ei) will also be used. One considersN
such particles occupying a volumeV at the temperatureT;
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one can ideally subdivide to total volume intoN cells, each
with volume v5V/N. The treatment used here further a
sumes that each cell is occupied by one and only one m
ecule. Particles are assumed to interact via a pairwise a
tive potentialF( i , j ), so that the total interaction energy fo
theN particles isU5( i , jF( i , j ). The quantity exp(2bU) is
the canonical probability density; upon integrating out t
coordintes of remaining particles, one can define sing
particle probability densitiesFi( i ), two-particle probability
densitiesFi j ( i j ), and so on@13,16#; we truncate the infinite
hierarchy at the two-particle level. By the partitioning
space mentioned above,Fi( i ) is the probability density for a
single particle confined inside a cell of volumev, and
Fi j ( i j ) is a probability density for two particles confined
two different cells. The above-mentioned functions can a
be written in terms of mean-force potentials~MFP’s!, i.e.,

Fi~ i !5~1/Q!exp„2bw i~ i !…, ~1!

Fi j ~ i j !5~1/Q2!exp$2b@w i j ~ i j !1F~ i j !#%, ~2!

where

Q5E
i
d~ i !exp„2bw i~ i !…, E

i
d~ i !5E

w
dqidei .

Here b5u215(kBT)21 is the inverse temperature andw
5v ^ a, wherea is the volume associated with orientation
The functionsw i( i ) andw i j ( i j ) are singlet and binary mean
force potentials, given by sums of the form

w i~ i !5(
j Þ i

w i , j~ i !, ~3!

w i j ~ i j !5 (
lÞ i , j

w i j ,l~ i j !. ~4!

Here w i , j ( i ) and w i j ,l( i j ) are mean-force potentials:w i , j ( i )
is the singlet mean-force potential for a molecule in thei th
cell, due to a molecule in thej th cell, and averaged over th
state of the latter. Similarly,w i j ,l( i j ) is the binary mean-
force potential of moleculesi and j in the i th and j th cells,
due to a molecule in thel th cell, and averaged over the sta
of the latter. The subscripts before the comma correspon
the MFP dependence on the coordinates of molecules;
subscript after the comma corresponds to the average st
Using now the relations between singlet and binary functi
which follow from their definition, one has

E
i
d~ i !Fi~ i !51, E

j
d~ j !Fi j ~ i j !5Fi~ i !. ~5!

The two-particle function is similarly related to a thre
particle function by an integral relation, etc. Here and in
following we take into account only singlet- and two-partic
functions of the infinite hierarchy, i.e., only pair correlatio
between cells. In order to obtain a closed set of equations
separate the MFP’s into irreducible parts@13,16#. To the ap-
proximation considered here, i.e., neglecting three-cell
higher-order correlations, we have

w i j ,l~ i j !5w i ,l~ i !1w j ,l~ j !, ~6!
-
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and then the expressions for binary mean-force poten
w i j ( i j ) and functionFi j ( i j ) take the forms

w i j ~ i j !5w i~ i !1w j~ j !2w i , j~ i !2w j ,i~ j !,

Fi j ~ i j !5Q22exp$2b@F~ i j !1w i~ i !1w j~ j !

2w i , j~ i !2w j ,i~ j !#%.

Using now the definitions

c[exp~2bw!, V~ i j !5exp„2bF~ i j !…,

the expressions for binary functions takes the form

Fi j ~ i j !5Fi~ i !F j~ j !V~ i j !c i , j
21~ i !c j ,i

21~ j !. ~7!

The last three factors in Eq.~7! reflect correlations betwen
cells, which distinguishes the approach used here fr
mean-field approximations. Substitution of Eq.~7! into Eq.
~5! leads to a closed system of nonlinear integral equati
~NIE’s! for the MFP’s@13#,

c i , j~ i !5E
j
F j~ j !V~ i j !c j ,i

21~ j !, ~8!

where

F j~ j !5
c j~ j !

E
j
c j~ j !d~ j !

. ~9!

Equations~3!, ~8!, and ~9! now provide a closed system o
nonlinear integral equations for the MFP’s. After solvin
these equations, one can compute microscopic properties
liquid-crystalline system, expressed in terms of one- a
two-particle functions, as well as thermodynamic ones
pressed in terms of the free energy@13,16#, i.e.,

f 5F/N52b21lnE
i
c i~ i !d~ i !, ~10!

c i~ i !5)
j Þ i

c i , j~ i !. ~11!

In Eq. ~11!, the ) j Þ i run over all neighbors of celli. Note
that the same system of equations appears in the Bethe
proximation for a lattice model of surfactant mixtures†Eq.
~12! in Ref. @17#, and Ref.@18#‡; let us also mention that the
present approach is similar in spirit to cluster variation
methods, originally developed for magnetic lattice spin mo
els ~see, e.g., Ref.@19#!, and later used for nematogenic la
tice models as well~see, e.g., Refs.@20,21#!. In Ref. @21#
both the two-site cluster method and computer simulat
were used to study a lattice model consisting of thr
component unit vectors, associated with a simple-cubic
tice, and interacting via a nearest-neighbor potential of
form 2aP2(h)1bP1(h),h5ei•ej , wherea.0, and theb
term crudely allows for polar effects; hereP1 andP2 denote
first- and second-order Legendre polynomials.
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III. METHOD OF SOLUTION FOR THE SYSTEM
OF NONLINEAR INTEGRAL EQUATIONS

The problem of solving the five-dimensional problem~8!
is very complicated, and there are no good general meth
for more than one nonlinear equation. Except for linear pr
lems, solutions are invariably obtained by a numerical ite
tive procedure, using the formula

c [k11]~Pi !5$c [k]~Pi !L̂c [k]~Pi !%
1/2, ~12!

where L̂,uuL̂uu<1 is the five-dimensional nonlinear integr
operator defined by Eq.~8! in the spacewi5v ^ a, andPi is
a five-dimensional vector in the same space.

The problem of the existence and uniqueness of the s
tion for the one-dimensional problem has been investiga
by Kronrade~see Ref.@22#!, and this finding can be gene
alized to multidimensional domains as well@23#. For
smoothly varying functions, good algorithms will alway
converge, provided the initial guess is accurate enough;
success strongly depends on a good initial guess for the
lutions c(Pi). The algorithm~12! was implemented as fol
lows: the initial approximation was set to

c i , j
m[0]~Pi !5const

and

c i
[0]~Pi !5 )

m51

l

)
j Þ i

Nm

c i , j
m[0]~Pi !,

wherel is the number of neighbors andNm is their quantities.
The integrals in the right-hand side of

c i , j
m[k11]~Pi !5$c i , j

m[k]~Pi !L̂c i , j
m[k]~Pi !%

1/2, ~13!

for m51,2, . . . ,l , have to be calculated numerically, i.e.,

E
0

1

dx1•••E
0

1

dxnf ~x1 ,x2 , . . . ,xn!'~1/M ! (
a51

M

f ~Pa!,

~14!

where the points are chosen according to some suitable
terion: a straightforward Monte Carlo integration yields
precisionR;O(1/AM ), whereas Sobol’s method (LPt se-
quence @24#, see also the Appendix! produces R
;O„M 21(lnM)n

….
The iterative procedure@Eq. ~12!# can be repeated fo

various neighbors of thei th cell; in order to keep the treat
ment numerically tractable, we took the drastic step of tr
cating the interaction potential at second neighbors.

The procedure was then iterated until a prescribed ac
racy was achieved. The number of iterations ranged betw
a few tens and a few hundreds, depending on the numbe
factors, but mainly on the kernelV( i j ). Calculations were
carried out usingM5800, corresponding to 8002 points for a
Monte Carlo integration of comparable accuracy.
ds
-
-

u-
d

us
o-

ri-

-

u-
en
of

IV. PAIR POTENTIAL MODEL

The kernel of integral equations in Eq.~13! is determined
by the pair interaction potential; for two arbitrary molecul
~i! and (j ), let us first define

qi j 5qi2qj , qi j 5uqi j u, r i j 5qi j /qi j .

The pair potential was chosen to be the sum of a Gay-Be
~GB! @1# and dipole-dipole interaction

F~ i j !5FGB~ i j !1Fdd~ i j !.

The GB term has the form@1#

FGB~ i j !54e0eF S s0

qi j 2s1s0
D 12

2S s0

qi j 2s1s0
D 6G ,

~15!

wheres5s(r i j ,ei ,ej ) and e5e(r i j ,ei ,ej ) depend on mu-
tual orientations but not on the distance between center
mass, and their expressions can be found in Ref.@1#, Eqs.
~3!, ~4!, ~8!, ~9!, and~10!. s depends on the molecular elon
gation ~or length-to-breadth ratio! g ~denoted bys i /s' in
Ref. @1#!, wherease depends on bothg and another param
eter, which can be used to adjust the ratio between end
end and side-by-side well depths, denoted bye l /es . In our
calculations, the parametersm and n of Ref. @1# have been
fixed to the values 1 and 2, respectively. The dipolar int
action is defined by

Fdd~ i j !5
D2

qi j
3 $ei•ej23~r i j •ei !~r i j •ej !%, ~16!

whereD is the common magnitude of molecular dipole m
ments; we are considering here central dipoles along mole
lar symmetry axes. As pointed out in the preceding sect
the interaction was truncated at second neighbors.

V. FORMULAS FOR THE FRANK ELASTIC CONSTANTS

Within the framework of the theory in Ref.@14#, based in
turn on a density-functional approach, one can write a f
mally exact expression for the Frank elastic constants, i.

K11

K
511l~529z!, ~17!

K22

K
512l~113z!, ~18!

K33

K
5124l~123z!, ~19!

where

z5
P̄42 P̄6

P̄22 P̄4

, l5
v221

4~v212!
, ~20!

K5
1

3
~K111K221K33!5

1

3
L~3P̄221!2~ P̄22 P̄4!

32v

2v
,

~21!
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v5
g221

g211
, L53M4b2r2s0

5pv3u
11 1

14 v2

~12v2!2
,

~22!

b54ps0
2rv2M2

11 3
14 v2

3~12v!
;

here M2m52*0
`dyC(y)y2m, m51,2 are radial integrals

over the DCF.
Order parameters can be expressed in terms of the f

tion c i( i ) as

P̄2L5^P2L~cosu i !& i5E
i
d~ i !Fi~ i !P2L~cosu i !, ~23!

whereu i denotes the polar angle, i.e., the angle between
long axis of the molecule and the director, taken to coinc
with the cellz axis.

There exists another density-functional approach@15#
connecting elastic properties of the nematic with structu
quantities such as the one-particle distribution function a
the DCF, both of an aligned nematic. Based on the Onsa
approximation for the DCF, i.e.,

C~qi j ,ei ,ej !5exp$2bF~qi j ,ei ,ej !%21, ~24!

the Frank elastic constants are expressed by

K11

K
511l123l2z1 , ~25!

K22

K
5122l12l2z1 , ~26!

K33

K
511l114l2z1 , ~27!

where

z15
P̄4

P̄2

, l15
2R222

7R2120
, l25

27

16

R221

7R2120
, R5g21.

~28!

In the framework of the theory in Ref.@14#, Nemtsov took a
different approximation for the DCF, C(qi j ,ei ,ej )
5C(qi j /s), wheres is the size parameter, which depen
on molecular orientations, and is given by Eqs.~8!–~10! of
Ref. @1#; this turned out to work slightly better than Onsa
er’s approach.

Another remark on the level approximations involved
appropriate: one can calculate the set of order paramete
the framework of a statistical-mechanical theory which
counts for intercell pair correlations, based, for example,
the concept of average force potentials. However, the D
used in the expressions for the elastic constants@~17!–~19!
and ~24!–~26!# has been calculated in the framework of t
mean-field theory†see also Eq.~35! of Ref. @6#‡, where the
repulsive interaction has the form of a hard-core poten
with an angle-dependent size parameters, and the attractive
part is treated to first order in perturbation theory. In oth
words, one can calculate the set of order parameters at
c-

e
e

l
d
er

in
-
n
F

l

r
ne

level of rigor, but then use a lower one in the final expre
sions for the elastic constants. Here we attempt to take
account the influence of intercell pair correlations on t
elastic constants, in the framework of average force pot
tials, by calculating the ratiosKii /K and avoiding explicit
calculation of the DCF.

VI. NUMERICAL RESULTS

Our calculations have been performed for temperatu
and densities, corresponding to the nematic phase. Red
units have been used for density (r5s0

3/v), temperature
(b215u5kBT/e0), dipole moment @m* 5D/(s0

3e0)1/2#,
and anisotropy parameterg, for which the valueg53 was
chosen.

Figure 1 reports the temperature dependence of order
rametersP̄2L at fixed densityr50.33, and shows a goo
agreement with the corresponding simulation results fr
Ref. @7#; Fig. 2 shows the density dependence of the nem
order parametersP̄2L at fixed temperatureu51, for both
polar and nonpolar models; the density range (0.27<r
<0.33) corresponds to the nematic range of the GB fluid.
expected, orientational order is found to increase with
creasing density. Figure 3 shows the temperature depend
of the elastic constantsKii /K, at fixed densityr50.33, cal-
culated using the different approaches mentioned above
compared with results of molecular-dynamics simulations
the same thermodynamics condition@7#; on the whole, the
difference between the reseults obtained by the two theo
ical treatments is roughly independent of temperature.
sults of calculations for splay deformationK11/K ~black
symbols: circles, squares, triangles! show the best agreemen

FIG. 1. Temperature dependence of orientational order par

etersP̄2L for the pure GB model, at constant density. Circles,P̄2 ;

triangles,P̄4 in the framework of the present theory; squares a

diamonds refer toP̄2 and P̄4 , respectively, as estimated b
molecular-dynamics simulation@7# at the same density.
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FIG. 3. Temperature dependence of the ratioKii /K at constant
density. Black circles, values ofK11/K calculated by means of Eq
~17!; black squares, the same values based on Eq.~24!; black tri-
angles, values of splay deformations recalculated from Fig. 6
Ref. @7#. Empty circles, values ofK22/K calculated by means of Eq
~18!; empty squares, the same values based on Eq.~25!; empty
triangles, values of twist deformation recalculated from Fig. 6
Ref. @7#; stars, values ofK33/K calculated by means of Eq.~19!;
crosses, the same value based on Eq.~26!; diamonds, values of
bend deformation recalculated from Fig. 6 in Ref.@7#.

FIG. 2. Density dependence of orientational order parame

P̄2L at constant temperature, and for different values of the redu

dipole moment. Circles,P̄2 for m* 50; diamonds,P̄4 for m* 50;

squares and triangles refer toP̄2 and P̄4 , respectively, andm*
52.
between the two theoretical approaches as well as with si
lation results: results of both calculations for twist and be
deformations show more pronounced differences from
results obtained by the two theoretical approaches, as we
with simulation results: in Fig. 3 the disagreement w
simulation results forK22/K increases with lowering tem
perature, whereas for bend deformationK33/K the same dif-
ferences increase with increasing temperature.

The present results show a pronounced increase ofP̄2
with increasing dipolar contribution; this is in qualitativ
agreement with simulation results obtained by various
thors@10–12#, showing that a strong dipolar contribution ca
even favor smectic ordering.

In a few cases we examined the effect of different tru
cation radii; for example, whenr50.33,u51, andm* 51,
we found a change inP̄2 from 0.954~nearest neighbors! to
0.9695~second neighbors!; for the same values ofr andu,
but m* 52,P̄2 similarly changed from 0.9695 to 0.9806. R
sults quoted in the following were obtained by taking in
account first and second neighbors only.

The most rigorous test of the theory would be a compa
son with the Monte Carlo simulations for the same pair p
tential. Such computer simulation data for OPP̄2 have been
reported@10# at fixed temperatureu51.2, densityr50.3,
and dipolar momentm* 52.0. We found a change inP̄2
from 0.963~in our calculations! to 0.97~in Ref. @10#!.

Figure 4 shows the effect of dipolar interactions on ord
parametersP̄2L , at fixed densityr50.33, and for two tem-
peratures; Fig. 2 shows the influence of dipolar interact
on order parametersP̄2L , for the number of densities, a
fixed temperatureu51.0; they both point to a significan

in

FIG. 4. Influence of the dipolar interaction on orientational o

der parametersP̄2L at constant density, and for different temper

tures. Circles,P̄2 at u51; triangles,P̄4 at the same temperature

squares and diamonds refer toP̄2 and P̄4 , respectively, atu51.5.
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strengthening of orientational order with increasing dens
and dipole moment.

Finally, Fig. 5 reportsm* dependences of the ratio
Kii /K, at fixed densityr50.33 and temperatureu51; Fig.
6 reports their density dependence at fixed tempera
(u51), at two different values ofm* . Notice that individual
order parameters exhibit a pronounced dependence onm* ,
but the ratios of the elastic constants depend on the o
parameters via their combinationsz and z1 @see Eqs.~17!–
~26!#, whosem* dependence is rather weaker. On the ot
hand, a strong density dependence of the individual ela
constantsKii should be expected, sinceKii ;r2 ~see the
equations in Sec. V!.

VII. CONCLUSIONS

In this paper, a statistical-mechanical theory based u
the method of conditional distribution functions has be
applied to calculate structural properties and Frank ela
constants for a system consisting of cylindrically symme
particles interacting via a Gay-Berne pair potential, a
supplemented by a dipolar term. Calculations of the ela
constants of the purely Gay-Berne model have been car
out on a simple-cubic system, and for a range of tempera
and densities corresponding to the nematic phase, as in
phase diagram calculated by de Miguel and Rull@26#. Two
analytical theories expressing the elastic constants in te
of DCF have been tested@14,15#, and a good agreement ha
been found between their predictions, as well as with res
obtained by molecular-dynamics simulation@7#, via expan-
sion of the DCF on the basis ofS functions.

In addition to the pure GB model, we have also inves
gated the effect of dipolar interaction although in a mo
approximate way, since a proper treatment of its long-ra

FIG. 5. Influence of the dipolar interaction on the ratiosKii /K,
at constant density and constant temeprature. Crosses,K33/K by
Eq. ~19!; stars,K33/K by Eq. ~26!; circles, K11/K by Eq. ~17!;
squares,K11/K by Eq. ~24!; triangles,K22/K by Eq. ~18!; dia-
monds,K22/K by Eq. ~25!.
y

re

er
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character would become computationally prohibitive.
On the basis of these calculations, it is concluded that

elastic constants are affected in a more pronounced way
changes in the thermodynamic state than by dipolar inte
tions. We also wish to comment on the approximations
volved in this and similar treatments. At the first level, som
kind of approximation is needed in order to calculate ord
parameters, which may or may not involve neglecting sho
range pair correlations.

At the second level, some simplified version of the DC
has to be used, and this often means neglecting short-ra
pair correlations, even if taken into account at the previo
one; the procedure is expected to yield better estimate
ratios between elastic constants than of their individual v
ues.
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APPENDIX: SOBOL’S METHOD †24‡

The LPt generator has been organized as follows: o
initially new sequenceWj

( l )5r j
( l )221, where entriesr j

( l ) were
takes from Table 1 of Ref.@24#, and eachWj

( l ) were ex-
pressed as finite binary fraction. If the binary representat
of an arbitrary integeri is em•••e2e1 , then thej th compo-

FIG. 6. Density dependence of the ratiosKii /K, at constant
temperature, and for two valuesm* 50 andm* 52. Stars and tri-
angles indicate ratiosK33/K calculated by means of Eq.~19! for
m* 50 andm* 52, respectively. Diamonds and circles indicate r
tios K11/K calculated by means of Eq.~17! for m* 50 m* 52,
respectively. Crosses and squares indicate ratiosK22/K calculated
by means of Eq.~18! for m* 50 andm* 52, respectively.
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nent of the pointPa is given by Pa
j 5e1Wj

(1)!e2Wj
(2)!••

•!emWj
(m) , where! denotes addition modulo 2 in each b

nary place, andj 51, . . . ,n. We used the relatively slow
arithmetic program for creation of theLPt sequence: the
effort to generate ann-dimensional pointPa is proportional
to (log2a)2n.
s,

iq
s,

in

J

Coordinates Pa in Eq. ~13! were chosen such tha
c i

[1] (Pa) could be calculated at points forming the same s
tionary LPt sequence as used in the evaluation of integr
with the initial approximationc i

[0] (Pa). In other words, the
grid points are generated once and for all; a more deta
discussion ofLPt sequences can be found in Ref.@25#.
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